Research Institutions - MemCon | Kisaco Research

Research Institutions - MemCon

Memory Con
26-27 March, 2024
Computer History Museum, Silicon Valley, CA

Why Should Research Institutions Attend MemCon 2024?

We attract state depatments aimed at solving particular data-related issues for use cases. An organization such as the Department of Homeland Security attends in order to: 

  • Understand hyperscaler activity to benchmark their work against.

  • Push the field forward and utilise scale of private companies.

  • Learn the latest on topics such as HPC and Quantum Computing. 

If you'd like to find out more information about attending as an AI vendors, register your interest here

CONFIRM YOUR PLACE HERE

Featured Speakers Include

Author:

James Ang

Chief Scientist for Computing
Pacific Northwest National Lab

Jim is the Chief Scientist for Computing in the Physical and Computational Sciences Directorate (PCSD) at Pacific Northwest National Laboratory (PNNL). Jim’s primary role is to serve as PNNL’s Sector Lead for the DOE/SC Advanced Scientific Computing Research (ASCR) Office. At PNNL, the ASCR portfolio includes over a dozen R&D projects in computer science, applied mathematics, networking, and computational modeling and simulation. Jim also serves as the lead of the Data-Model Convergence Initiative, a lab-wide 5 year investment to develop new computer science capabilities that support integration of scientific high performance computing and data analytics computing paradigms. Through a co-design process, challenge problems that integrate scientific modeling and simulation, domain-aware machine learning, and graph analytics are used to drive the development of a supporting system software stack that maps these heterogeneous applications to conceptual designs for System-on-Chip (SoC) heterogeneous processors. A key element of this converged computing strategy is to support PNNL objectives in accelerating scientific discovery, and real time control of the power grid. Jim's prior connections to other government agencies transferred to PNNL with him and has led to PNNL and Jim's engagement in several national security programs.

Prior to joining PNNL, Jim served as the a member of the initial DOE Exascale Computing Project (ECP) leadership team from 2015-2017. Jim's role was the Director of ECP's hardware technology focus area. His primary role and responsibility was the development and definition of the DOE ECP's hardware R&D strategy. The key elements of the strategy included: 1) Establish a portfolio of PathForward vendor-led hardware R&D projects for component, node and system architecture design, and 2) Create a Design Space Evaluation team to provide ECP with independent architectural analysis of the PathForward vendors' designs and the ability to facilitate co-design communication among the PathForward vendors and the ECP's application and system software development teams.

 

James Ang

Chief Scientist for Computing
Pacific Northwest National Lab

Jim is the Chief Scientist for Computing in the Physical and Computational Sciences Directorate (PCSD) at Pacific Northwest National Laboratory (PNNL). Jim’s primary role is to serve as PNNL’s Sector Lead for the DOE/SC Advanced Scientific Computing Research (ASCR) Office. At PNNL, the ASCR portfolio includes over a dozen R&D projects in computer science, applied mathematics, networking, and computational modeling and simulation. Jim also serves as the lead of the Data-Model Convergence Initiative, a lab-wide 5 year investment to develop new computer science capabilities that support integration of scientific high performance computing and data analytics computing paradigms. Through a co-design process, challenge problems that integrate scientific modeling and simulation, domain-aware machine learning, and graph analytics are used to drive the development of a supporting system software stack that maps these heterogeneous applications to conceptual designs for System-on-Chip (SoC) heterogeneous processors. A key element of this converged computing strategy is to support PNNL objectives in accelerating scientific discovery, and real time control of the power grid. Jim's prior connections to other government agencies transferred to PNNL with him and has led to PNNL and Jim's engagement in several national security programs.

Prior to joining PNNL, Jim served as the a member of the initial DOE Exascale Computing Project (ECP) leadership team from 2015-2017. Jim's role was the Director of ECP's hardware technology focus area. His primary role and responsibility was the development and definition of the DOE ECP's hardware R&D strategy. The key elements of the strategy included: 1) Establish a portfolio of PathForward vendor-led hardware R&D projects for component, node and system architecture design, and 2) Create a Design Space Evaluation team to provide ECP with independent architectural analysis of the PathForward vendors' designs and the ability to facilitate co-design communication among the PathForward vendors and the ECP's application and system software development teams.

 

Author:

Mike Howard

Vice President of DRAM and Memory Markets
TechInsights

Mike has over 15 years of experience tracking the DRAM and memory markets. Prior to TechInsights, he built the DRAM research service at Yole. Prior to Yole, Mike spent time at IHS covering DRAM and Micron Technology where he had roles in engineering, marketing, and corporate development. Mike holds an MBA from The Ohio State University and a BS in Chemical Engineering and BA in Finance from the University of Washington.

 

Mike Howard

Vice President of DRAM and Memory Markets
TechInsights

Mike has over 15 years of experience tracking the DRAM and memory markets. Prior to TechInsights, he built the DRAM research service at Yole. Prior to Yole, Mike spent time at IHS covering DRAM and Micron Technology where he had roles in engineering, marketing, and corporate development. Mike holds an MBA from The Ohio State University and a BS in Chemical Engineering and BA in Finance from the University of Washington.

 

Author:

Sony Varghese

Senior Director
Applied Materials

Dr. Sony Varghese is Senior Director of strategic marketing for memory in the Semiconductor Products Group at Applied Materials. In this role, he is involved in identifying challenges to scaling and future key inflections in the memory industry. Prior to Applied Materials, he worked on developing various memory technologies within the R&D organization at Micron Technologies. Dr. Varghese has over 25 U.S. patents issued or pending in the area of semiconductor processing and integration. He holds a Ph.D. in Mechanical and Materials Engineering from The Oklahoma State University, USA.

Sony Varghese

Senior Director
Applied Materials

Dr. Sony Varghese is Senior Director of strategic marketing for memory in the Semiconductor Products Group at Applied Materials. In this role, he is involved in identifying challenges to scaling and future key inflections in the memory industry. Prior to Applied Materials, he worked on developing various memory technologies within the R&D organization at Micron Technologies. Dr. Varghese has over 25 U.S. patents issued or pending in the area of semiconductor processing and integration. He holds a Ph.D. in Mechanical and Materials Engineering from The Oklahoma State University, USA.

Author:

Xavier Soosai

Chief Information Officer
Center for Information Technology/National Institute of Health

As the Director of the Office of Information Technology Services of the Center for Information Technology (CIT), Soosai oversees ten service areas and the delivery of scientific research and business operations across the institutes and centers (ICs) at NIH. This includes maintaining the high-performance computing environment used by NIH intramural scientists; maintaining NIH’s secure, high-speed network; ensuring the viability and availability of collaboration services, compute hosting and storage services, identity and access management services, service desk support, and more for the NIH community. 

Soosai works with CIT leadership and internal service area managers and collaborates with NIH ICs to define scope and provide technical expertise, strategic planning, and leadership for local and enterprise IT projects that drive efficiency and innovation across NIH. Additionally, Soosai is responsible for directing the evaluation and adoption of rapidly evolving technology and forecasting future technology needs.

 

Xavier Soosai

Chief Information Officer
Center for Information Technology/National Institute of Health

As the Director of the Office of Information Technology Services of the Center for Information Technology (CIT), Soosai oversees ten service areas and the delivery of scientific research and business operations across the institutes and centers (ICs) at NIH. This includes maintaining the high-performance computing environment used by NIH intramural scientists; maintaining NIH’s secure, high-speed network; ensuring the viability and availability of collaboration services, compute hosting and storage services, identity and access management services, service desk support, and more for the NIH community. 

Soosai works with CIT leadership and internal service area managers and collaborates with NIH ICs to define scope and provide technical expertise, strategic planning, and leadership for local and enterprise IT projects that drive efficiency and innovation across NIH. Additionally, Soosai is responsible for directing the evaluation and adoption of rapidly evolving technology and forecasting future technology needs.

 

Agenda Highlights


How Memory Pooling Shapes Compute Functions within AI/ML

Author:

Dirk Van Essendelft

HPC & AI Architect
National Energy Technology Laboratory

Dr. Van Essendelft is the principle investigator for the integration of AI/ML with scientific simulations within in the Computational Device Engineering Team at the National Energy Technology Laboratory.  The focus of Dr. Van Essendelft’s work is building a comprehensive hardware and software ecosystem that maximizes speed, accuracy, and energy efficiency of AI/ML accelerated scientific simulations.  Currently, his work centers around building Computational Fluid Dynamics capability within the TensorFlow framework, generating AI/ML based predictors, and ensuring the ecosystem is compatible with the fastest possible accelerators and processors in industry.  In this way, Dr. Van Essendelft is developing NETL’s first cognitive-in-the-loop simulation capability in which AI/ML models can be used any point to bring acceleration and/or closures in new ways.  Dr. Van Essendelft sits on the Technical Advisory Group for NETL’s new Science-Based Artificial Intelligence/Machine Learning Institute (SAMI) and holds degrees in Energy and Geo-Environmental Engineering, Chemical and Biochemical Engineering, and Chemical Engineering from the Pennsylvania State University, University of California, Irvine, and Calvin College respectively.

Recent publications:

  • Rocki, K., Van Essendelft, D., Sharapov, I., Schreiber, R., Morrison, M., Kibardin, V., Portnoy, A., Dietiker, J. F., Syamlal, M., and James, M. (2020) Fast stencil-code computation on a wafer-scale processor, In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp pp 1-14, IEEE Press, Atlanta, Georgia.

Dirk Van Essendelft

HPC & AI Architect
National Energy Technology Laboratory

Dr. Van Essendelft is the principle investigator for the integration of AI/ML with scientific simulations within in the Computational Device Engineering Team at the National Energy Technology Laboratory.  The focus of Dr. Van Essendelft’s work is building a comprehensive hardware and software ecosystem that maximizes speed, accuracy, and energy efficiency of AI/ML accelerated scientific simulations.  Currently, his work centers around building Computational Fluid Dynamics capability within the TensorFlow framework, generating AI/ML based predictors, and ensuring the ecosystem is compatible with the fastest possible accelerators and processors in industry.  In this way, Dr. Van Essendelft is developing NETL’s first cognitive-in-the-loop simulation capability in which AI/ML models can be used any point to bring acceleration and/or closures in new ways.  Dr. Van Essendelft sits on the Technical Advisory Group for NETL’s new Science-Based Artificial Intelligence/Machine Learning Institute (SAMI) and holds degrees in Energy and Geo-Environmental Engineering, Chemical and Biochemical Engineering, and Chemical Engineering from the Pennsylvania State University, University of California, Irvine, and Calvin College respectively.

Recent publications:

  • Rocki, K., Van Essendelft, D., Sharapov, I., Schreiber, R., Morrison, M., Kibardin, V., Portnoy, A., Dietiker, J. F., Syamlal, M., and James, M. (2020) Fast stencil-code computation on a wafer-scale processor, In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp pp 1-14, IEEE Press, Atlanta, Georgia.

Accelerating Scientific Discovery: What is Next for High-Performance Computing (HPC) and is AI-Accelerated Hybrid Quantum Computing Achievable?

Author:

Xavier Soosai

Chief Information Officer
Center for Information Technology/National Institute of Health

As the Director of the Office of Information Technology Services of the Center for Information Technology (CIT), Soosai oversees ten service areas and the delivery of scientific research and business operations across the institutes and centers (ICs) at NIH. This includes maintaining the high-performance computing environment used by NIH intramural scientists; maintaining NIH’s secure, high-speed network; ensuring the viability and availability of collaboration services, compute hosting and storage services, identity and access management services, service desk support, and more for the NIH community. 

Soosai works with CIT leadership and internal service area managers and collaborates with NIH ICs to define scope and provide technical expertise, strategic planning, and leadership for local and enterprise IT projects that drive efficiency and innovation across NIH. Additionally, Soosai is responsible for directing the evaluation and adoption of rapidly evolving technology and forecasting future technology needs.

 

Xavier Soosai

Chief Information Officer
Center for Information Technology/National Institute of Health

As the Director of the Office of Information Technology Services of the Center for Information Technology (CIT), Soosai oversees ten service areas and the delivery of scientific research and business operations across the institutes and centers (ICs) at NIH. This includes maintaining the high-performance computing environment used by NIH intramural scientists; maintaining NIH’s secure, high-speed network; ensuring the viability and availability of collaboration services, compute hosting and storage services, identity and access management services, service desk support, and more for the NIH community. 

Soosai works with CIT leadership and internal service area managers and collaborates with NIH ICs to define scope and provide technical expertise, strategic planning, and leadership for local and enterprise IT projects that drive efficiency and innovation across NIH. Additionally, Soosai is responsible for directing the evaluation and adoption of rapidly evolving technology and forecasting future technology needs.

 

How are increased adoption of CXL, HBM, and memory protocol expected to change the way memory and storage is used and assembled?

Author:

Sony Varghese

Senior Director
Applied Materials

Dr. Sony Varghese is Senior Director of strategic marketing for memory in the Semiconductor Products Group at Applied Materials. In this role, he is involved in identifying challenges to scaling and future key inflections in the memory industry. Prior to Applied Materials, he worked on developing various memory technologies within the R&D organization at Micron Technologies. Dr. Varghese has over 25 U.S. patents issued or pending in the area of semiconductor processing and integration. He holds a Ph.D. in Mechanical and Materials Engineering from The Oklahoma State University, USA.

Sony Varghese

Senior Director
Applied Materials

Dr. Sony Varghese is Senior Director of strategic marketing for memory in the Semiconductor Products Group at Applied Materials. In this role, he is involved in identifying challenges to scaling and future key inflections in the memory industry. Prior to Applied Materials, he worked on developing various memory technologies within the R&D organization at Micron Technologies. Dr. Varghese has over 25 U.S. patents issued or pending in the area of semiconductor processing and integration. He holds a Ph.D. in Mechanical and Materials Engineering from The Oklahoma State University, USA.