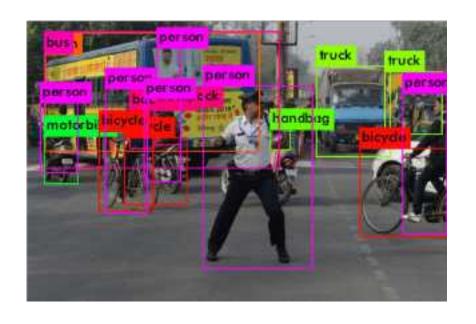
From TOPS to Throughput: Getting the most throughput from the least hardware

Dr. Cheng C. Wang Co-Founder & Senior VP Architecture/Software/Engineering Flex Logix Technologies, Inc.

cheng@flex-logix.com

Al Hardware Summit September 17-18, 2019, Mt. View, CA

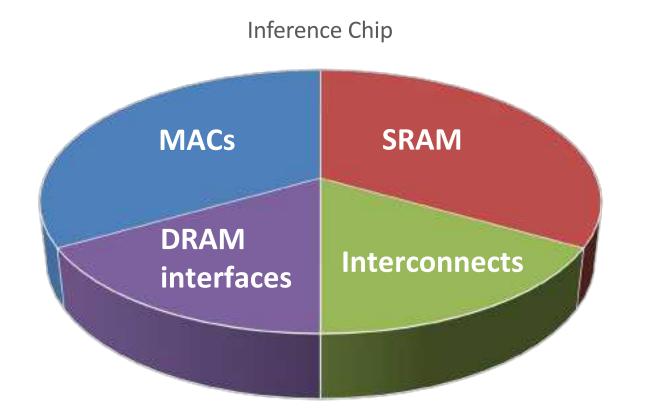


Customer Wish List for an Edge Inference Chip

Target neural network applications	Typically object detection (e.g. YOLOv3, SSD, not ResNet50)
Batch = 1	Lowest latency
Preferred resolution	Typically 1-4 Megapixels (not 224x224)
High prediction accuracy	No modifications to the model (no forced sparsity)
Targeted performance	Highest inferences / sec (not highest TOPS)
Within power and cost budget	No fans, low cost, highest inferences / W (not highest TOPS/W)
Major supported frameworks	No custom frameworks that requires porting

Efficiency is key: highest inferences / \$ and inferences / W is what customers look for

What contributes to inference efficiency?



Chip cost & power are dominated by:

- Compute (MACs)
- Local weight/activation (SRAM)
- Non-local weight/activation (DRAM)
- Data movement between them all (Interconnect)

DRAM chip cost & power are **not** included above

Only MAC & MAC utilization (%) contribute to inference performance. Everything else is overhead

How many MACs do we need? And how do we run them?

Short answer:

>100x more than what people are running today

Challenge:

Run the 100x models with much lower power & cost

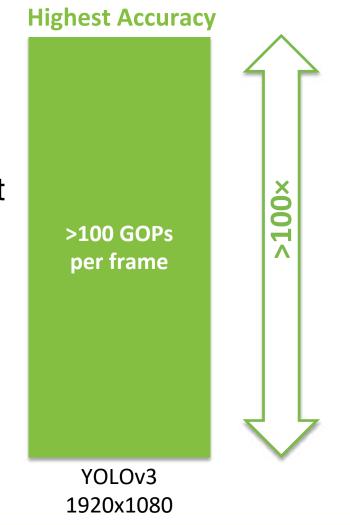
How?

 Reduce memory access & data movement, especially to/from DRAM

Lowest Accuracy
<1 GOP / frame</p>
MobileNetV2 SSD

224x224

5-10 GOPs per frame TinyYOLOv2 416x416

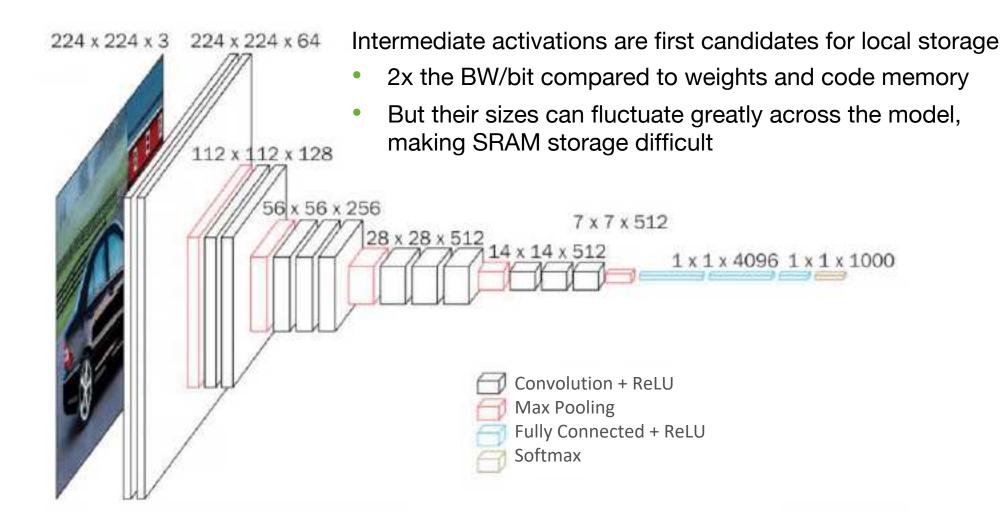


What needs to be stored in Neural Network Inference?

- 1. The input image
- 2. The weights
- 3. The intermediate activations
- 4. The code that controls the inference processor

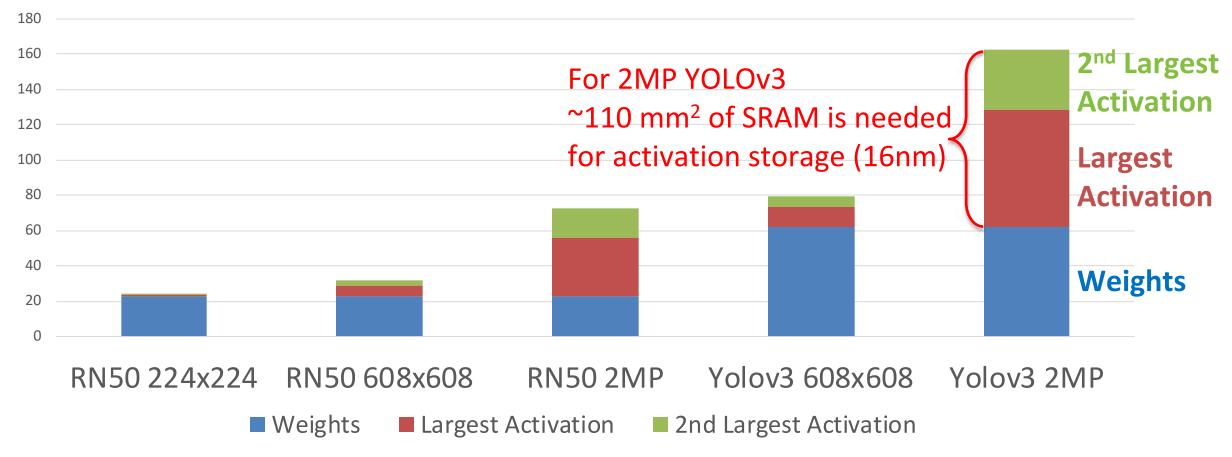
Storage	On-chip SRAM	Off-chip DRAM	
Power	Lower power	Higher power	
Cost	Higher cost/bit	Lower cost/bit	
Capacity	Limited capacity Not expandable	Higher capacity Expandable	
Application	Intermediate activations Small Weights Small Processor code	Small Weights Large Weights	

Activation Output Size Varies by Layer

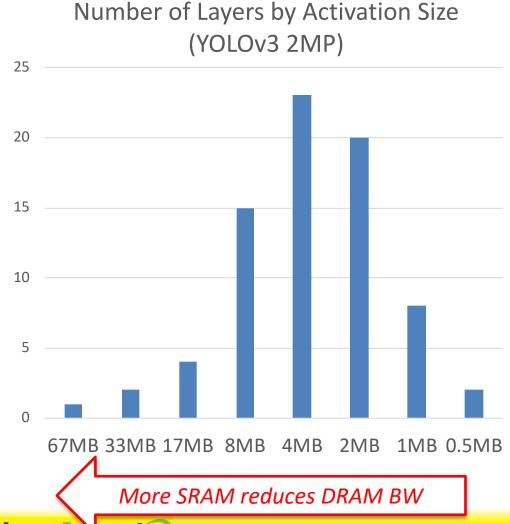


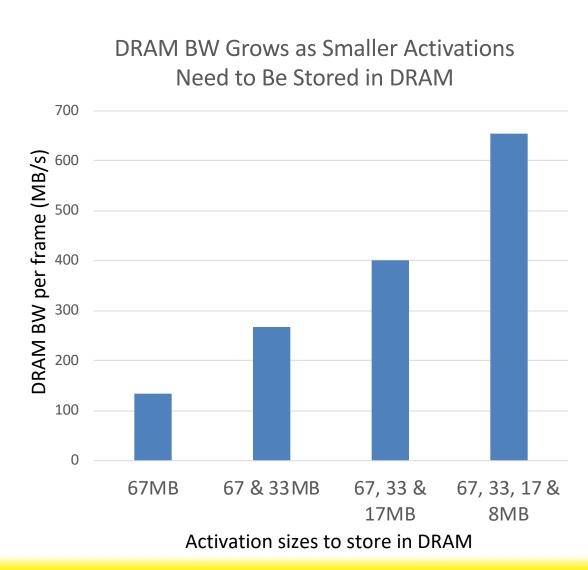
Activation Storage Size >> Weights for Megapixel images

Memory Storage (MB) to Process One Frame (batch=1, not counting code memory)



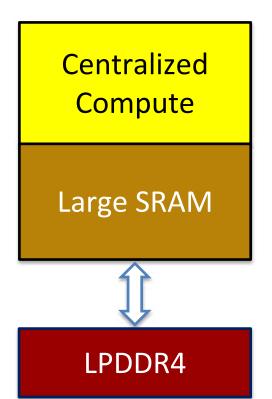
Balancing SRAM capacity vs. DRAM BW

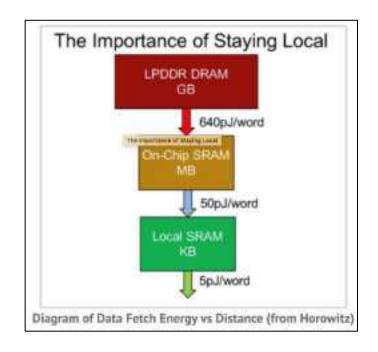


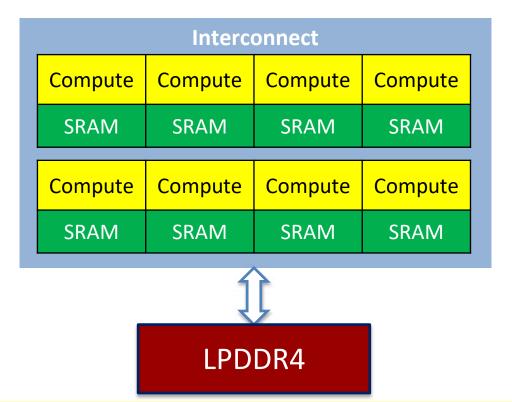


Memory Architecture: from Centralized to Distributed

- ✓ SRAM reduces >10x energy/bit over DRAM.
- ✓ Distributed, local RAM with each compute reduces energy/bit by another 10x
- But interconnect becomes the new problem (power, delay & SW programming complexity)



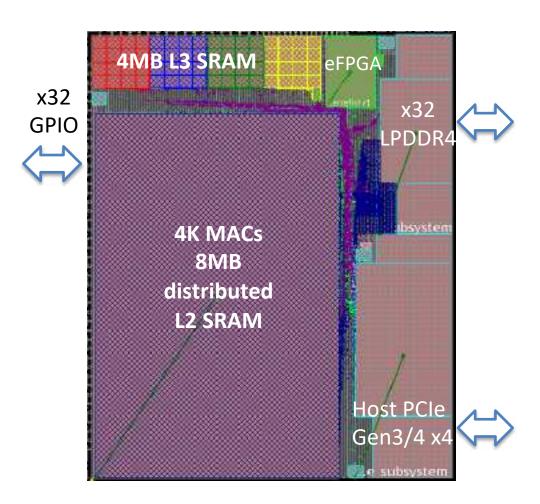




Keys to Efficient Inference Throughput

- Maximize MAC utilization
- Minimize everything else
 - Use smaller, distributed SRAM for compute
 - Use efficient, high bandwidth interconnects
 - Minimize off-chip DRAM access whenever possible
 - But keep 1 DRAM to allow for model growth

InferX X1 Key Specs, Die Plot



- 50mm² TSMC 16FFC
- 21x21mm FCBGA
- 1.067GHz Operation
- 4K MACs @ INT8x8/16x8
 or 2K MACs @ INT16x16/BF16
- Winograd acceleration for INT8
- 8MB L2 SRAM + 4MB L3 SRAM
- x32 LPDDR4 (16GB/s peak BW)
- Partners: TSMC, GUC, Synopsys, Arteris,
 Analog Bits, Cadence, Mentor
- Available as Chip & PCIe Board

ResNet-50 throughput comparison

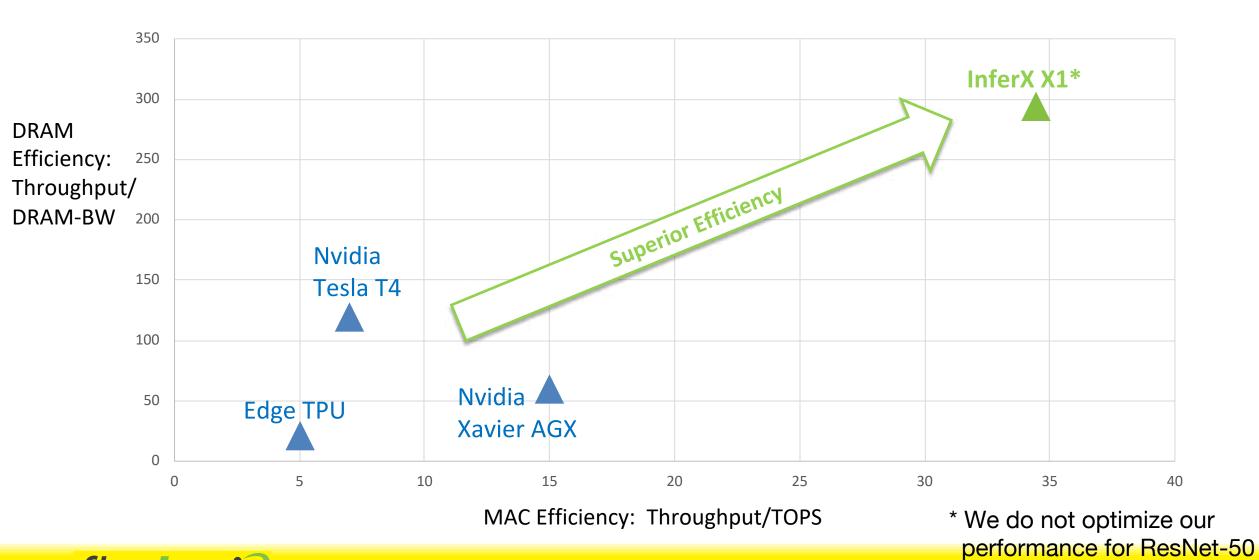
	TOPS (INT8)	Number of DRAM	ResNet-50 (batch=1) Inferences / s
Nvidia Tesla T4	130	8	961
Nvidia Xavier AGX	32	8	480
InferX X1	8.5	1	293
Google Edge TPU	4	1?	21 (batch=?)

Low correlation between TOPS, DRAM & throughput! But, high correlation between TOPS, SRAM, DRAM & Cost:

- More TOPS = more silicon area = cost
- More SRAM = more silicon area = cost
- DRAM = silicon area (PHY), package & BOM cost

Efficiency is Throughput/\$ - correlates with throughput/TOPS & throughput/DRAM

DRAM Efficiency & MAC Efficiency for ResNet-50, batch=1



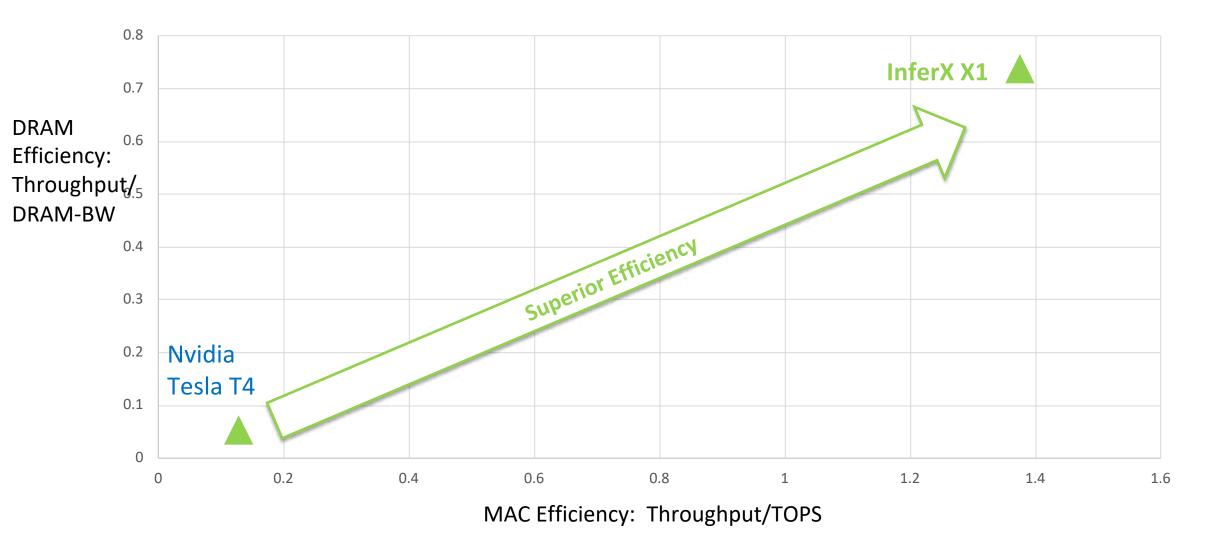
2MP YOLOv3 Throughput Comparison

	TOPS (INT8)	Number of DRAM	YOLOv3 2Megapixel Inferences / s
Nvidia Tesla T4 *	130	8 (320 GB/s)	16
InferX X1	8.5	1 (16 GB/s)	12

X1 has 7% of the TOPS and 5% of the DRAM bandwidth of Tesla T4

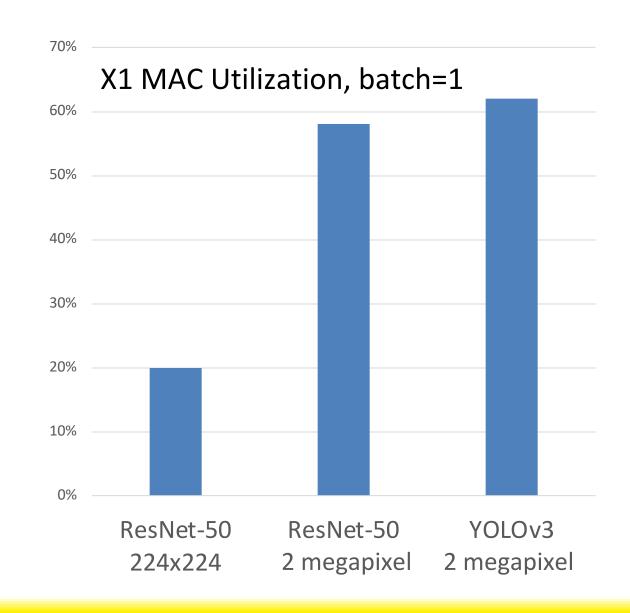
Yet it has 75% of the inference performance running YOLOv3 @ 2MP

Throughput/TOPS & Throughput/DRAM for YOLOv3, 2Megapixel, batch=1

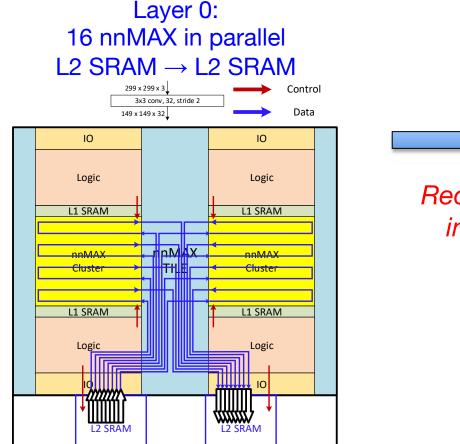


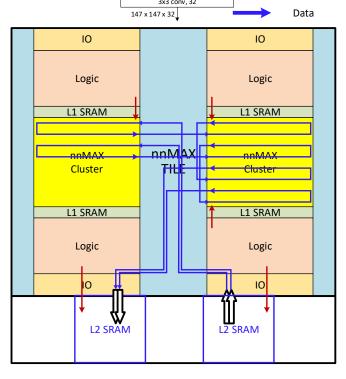
What Makes InferX X1 Efficient?

- InferX X1 is optimized for megapixel images & tough models
- How do we achieve high throughput/low cost?
 - 1. ASIC-like MAC efficiency:
 - ✓ High MAC utilization % = inference perf.
 - × Idle MACs = cost & power
 - 2. Programmable, efficient interconnect
 - 3. Reducing memory accesses via deep layer fusion
 - 4. "Hide" DRAM access time in background



#1 & 2 Dedicated path: memory to compute to memory, programmed for each layer

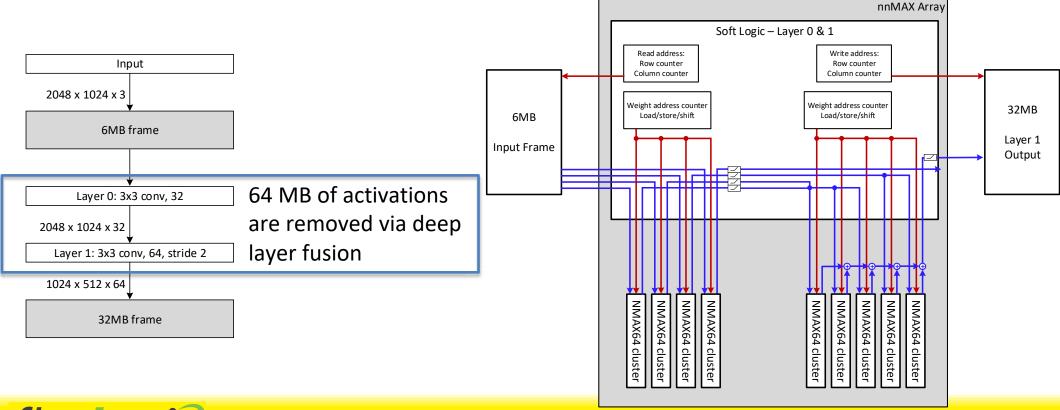




Localized data access & compute
ASIC-like performance yet fully reconfigurable *architectural diagram, not to scale

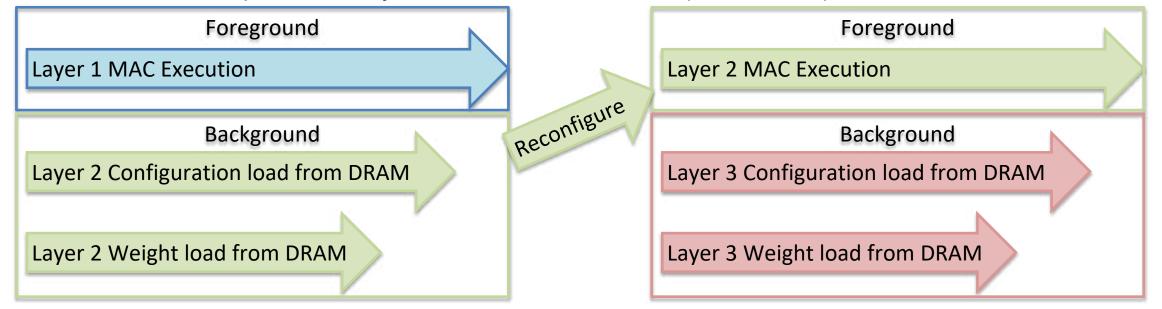
#3 Deep layer fusion reduces memory requirement

- Deep Layer Fusion combines multiple layers (not just activation layers) to eliminate reads/writes for some of the largest activations
 - In YOLOv3 2MP: DLF can reduce memory requirement by 2x



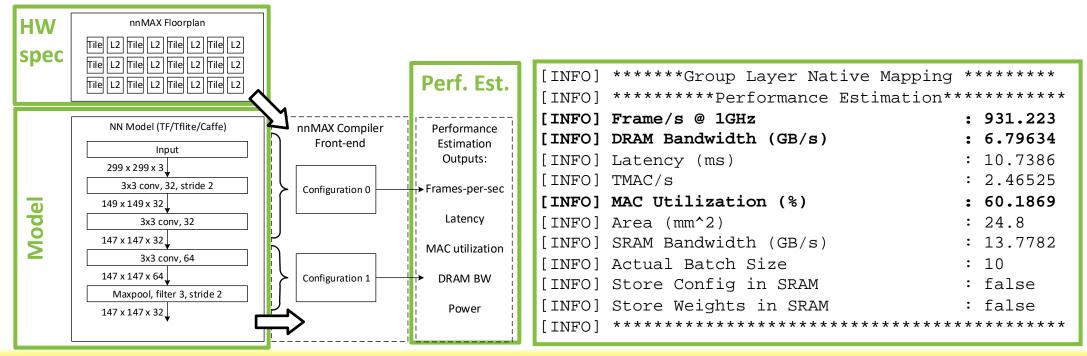
#4 "hiding" DRAM access in background

- Next layer's weights and configuration are loaded in background while current layer runs
 - During reconfiguration, the background data is quickly moved to the front
- With a small amount of SRAM, performance is kept very high by minimizing DRAM stalls
 - Most of the time, DRAM access time is "hidden" behind layer execution time
 - For 2MP Yolov3, just 4% of cycles are DRAM overhead (stalls MACs)



InferX X1 Performance Estimation – Available Now; Demo @ Booth 28

- First part of the compiler is the performance estimation
- Accepts X1 floorplan and TF-lite/ONNX model as input
 - Automatically partitions model across multi-layer configurations
 - Computes performance, latency, MAC utilization, DRAM BW per layer and per model



nnMAX Compiler tested on many popular models

imagenet_resnet_v1_50	nasnet_large
imagenet_resnet_v1_152	resnet_v2_50
imagenet_resnet_v2_101	resnet50_v1.5
imagenet_resnet_v2_152	resnet_v2_101_299
inception_v1_224	squeezenet
inception_v2_224	xeption
inception_v3_299	yolov2
inception_v4_299	yolov2_tiny
mobilenet_v1_224	yolov3
mobilenet_v2_224	yolov3_tiny
mobilenet_v1_COCO_SSD	deeplabv3_257

