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Training Giant Neural Networks Using Weight
Streaming on Cerebras Wafer-Scale Systems
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Abstract

State-of-the-art language models have grown in parameter count by three orders of magnitude
over the last two years. This growth has presented challenges for training both in terms of storage
and compute requirements. In this paper, we survey existing approaches used to scale training

to clusters of compute units and explore the limitations of each in the face of giant models.

One thing that all these approaches have in common is the storage of model parameters on the
compute units, which we find to be a primary driver of complexity and communication overhead.
We present a new paradigm for giant model training, called weight streaming, based on the
disaggregation of model storage and compute, and describe an implementation of this paradigm
using Cerebras wafer-scale systems. Our weight streaming architecture enables the training of
models two orders of magnitude larger than the current state-of-the-art, with a simple scaling
model. Combined with built-in support for weight sparsity, our solution can make training giant
networks tractable for the first time.
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Trends in Large Neural Network Models

State-of-the-art natural language processing (NLP) models have increased in size by three orders
magnitude in the past two years, and we expect this trend to continue (Figure 1). The recent GPT-3
paper! reports that in the 2018-2020 period, networks presented in the literature grew rapidly, with,
successively, 0.1, 0.3, 1.5, 8, 11, and 17 billion parameters. The GPT-3 language model greatly
exceeds these in size, with 175 billion parameters. There were significant benefits to size, especially
a demonstrated rapid specialization of the pre-trained model to a narrow context with only a few
additional training examples. Networks, such as the Switch Transformer,? are now pushing past the
trillion-parameter mark.

Memory and compute requirements

100,000
2 2018 2019 2020+
E e MSFT-1T (1T)
3 10,000
E ® GPT-3 (175B)
g 4 e T5(11B)
£ o T-NLG (17B)
8 100 e Megatron-LM (8B)
E o GPT-2 (1.58)
=
8 10
= «BERT Large (340M)
o
5 « BERT Base (110M)

1 10 100 1,000 10,000 100,000
Model memory requirement, GB

Figure 1. Growth of NLP models over the past three years.

Because of the growth of network size, training is taking more memory and more time. GPT-3 was
estimated to require 3.15x10% total floating-point operations to train and requires 2.8TB of memory
just to store weights and optimizer state (weights, gradients, and momentum terms). An additional
7.5TB would be required to store activations for a single training batch of 3.2 million tokens, assuming
that one batch of activations is stored for each of the 96 layers. The number of floating-point
operations required to train GPT-3 is one billion times greater than the peak FLOPS delivered by an
NVIDIA® A100 GPU, meaning that it would take over 30 years to train the model on a single GPU at
full utilization! Moreover, the memory footprint of training, including parameters and activations, is
125x greater than the memory capacity of a single A100. Clearly the key to training models of this size
is to scale out and harness the compute speed and memory capacity of many devices.

With models growing in computational complexity and outpacing the capabilities of individual
compute units, we must scale training to multiple compute units. The computational workload is
commonly distributed by splitting the batch or the model over many compute units, such as GPUs.
NVIDIA® estimates that GPT-3 could be scaled to 1,000 GPUs, reducing the training time to about
34 days’. Distributing training to a cluster of this size is complicated, but training on a small cluster is
impossible due to the memory required to store model parameters and activations. This is because
common approaches to distributed training require the model to be stored entirely in the memory of
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the compute units, what we refer to as stored weight training. Even if it were possible to work around
memory constraints, a training time lasting years would be prohibitive. In this paper, we describe a
new paradigm for training giant neural networks, called weight streaming, where model parameters
are not stored in the memory of the compute units. Weight streaming allows the cluster size to scale
independent of model size. Using weight streaming to harness the power of the Cerebras CS-2
system, we can reduce training time and simplify training at scale.

Concepts in NLP Model Training

This section gives a brief overview of the structure and process of training NLP models and

defines related terminology used throughout the paper. Readers who are already familiar with
these concepts may skip this section. NLP models process sequences of tokens which commonly
represent text as a series of words. We use S to represent the number of tokens (words) in each
sequence. Each token is encoded as an integer value corresponding to a word in the model’s
vocabulary. An NLP model converts a source sequence into a target sequence through a series

of transformations, beginning with an embedding table lookup. The embedding table contains

a vector of features, called a hidden state vector, for each word in the model’s vocabulary. The
number of features in each hidden state vector, which we refer to as H, is a property of the model
and typically numbers in the thousands. The per-token hidden state vectors propagate through the
model’s layers, each of which transforms the input vector to an equal-length output vector. Layers
use sets of trainable parameters to transform the hidden state vectors with operations such as
matrix multiplications and element-wise additions. We represent the number of layers in the model
as L, also referred to as the depth. The total number of parameters in the model is represented as
P, which includes the embedding table and each layer’s parameters. Throughout this paper, model
size is used to refer to the number of parameters. The hidden state of an input sequence at any
point in the model is represented by an activation tensor, which consists of a hidden state vector
for each token of the input sequence. As a shorthand, we use T to represent the activation tensor
size for one sequence:

T=HXS

Training an NLP model is performed by feeding labeled inputs, called training samples, through
the model to compute gradients which can be used to update the model’s parameters. The output
of the model for each sample is compared with the label to compute an error measure, which is
differentiated to compute an activation gradient. The gradient is backpropagated through the
layers of the model to compute both a weight gradient and new activation gradient at each layer.
A training job consists of multiple steps, called training iterations. In each training iteration a
subset of the training dataset, called a batch, is used to compute weight gradients for each layer.
These weight gradients are consumed by an optimizer algorithm to update the model’s weights
between each training iteration. Stochastic gradient descent (SGD) and Adam are commonly used
optimizer algorithms. Training iterations are performed until the model has converged, i.e. when
an error measure levels off.
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Methods for Scaling Training with Stored Weights

Training can be distributed to many compute units using data parallelism or model parallelism
(Figure 2). Data parallelism splits the batch of training samples over N, compute units with each
compute unit processing all layers of the model for its subset of the batch. Model parallelism splits
the model over multiple compute units, with each compute unit processing a subset of the layers
for all samples in the batch. The model can either be split by placing a subset of each layer on
each of N compute units, called tensor model parallelism, or by placing a subset of the layers on
each of N_ compute units, called pipeline model parallelism. Both modes of parallelism can be
combined, for example by creating N instances of the model, sharding the batch into N, shards,
and distributing each model instance across a set of N_ compute units, thereby using N, x N _
compute units.

Data Parallel Pipelined Model Parallel Tensor Model Parallel

Device 1 Device 2

el

Figure 2. Approaches to parallelism in neural network training.

This section quantifies memory and communication needed by each of the scaling approaches.
The memory and communication requirements of these common scaling approaches are
summarized in Table 1. Memory requirements are calculated based on the size of model weights
and per-layer activation tensors stored on a single compute unit. The communication models
account for transfers of weight gradients and per-layer activation tensors into and out of a single
compute unit. Although communication is also needed to transfer each batch of training samples
to the compute units, we do not account for this in our models because the inputs to NLP models,
which are the focus of this paper, are very small relative to gradients and activation tensors. Inputs
consist of a single integer per token, representing a word ID in the vocabulary, whereas activation
tensors consist of a H-length vector per token.

Data Parallelism

Data parallelism places a copy of the model on each of N, compute units and shards each batch
of training samples over the compute units. The number of training samples processed by each
compute unit, b, is:

After each unit has computed partial weight gradients using its shard of the batch, gradients are
summed between all compute units to get the gradient for the full batch. Each compute unit uses
the summed gradient to update its copy of the weights, guaranteeing that the replicas of the
model stay in sync.
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Memory is needed on each compute unit to store model parameters and activations. Each
compute unit stores an entire replica of the model and an activation tensor per-layer for each
sample in its shard of the batch, needed for gradient computations in the backward pass.
The total memory requirement per compute unit is:

Memory = P+ LTb,

At the end of every training iteration, compute units communicate in order to reduce gradients
prior to each weight update. They perform an all-reduce operation, where each compute unit
receives a copy of the sum of the original, partial gradient tensors. Commonly used algorithms for
all-reduce require each node to send and receive the entire gradient for each layer's tensor once or
twice, so total communication per compute unit is:

Communication volume = O(P)

Model Parallelism

Model parallelism involves distribution of the model’s layers over multiple compute units.
Individual layers can be split over multiple compute units, or each compute unit can contain
groups of entire layers, also known as pipeline model parallelism. Parameters are not replicated
when model parallelism is used alone: each compute unit stores a subset of the model parameters
corresponding to the computations which it performs. Activations are communicated between
compute units as a batch of training data progresses through the model.

Tensor Model Parallelism

One method of model parallelism, known as tensor model parallelism, splits each layer over N
compute units. For example, a fully connected layer can be split on its input features, its output
features, or both. When input features are split, each compute unit computes partial sums for all
output features, then a reduction is required to compute output features. When output features
are split, input activations are broadcast to each compute unit where a subset of output features
are computed for each sample. Storage of parameters and activations, for gradient computations,
is distributed, so memory required per compute unit is:

P LTB
Memory = — + ——
m Nm

Communication among compute units is required, at the transition between finishing a layer and
beginning the next layer, to reduce partial sums or redistribute the output tensor so that it matches
the distribution of weights used by the next layer. When weights are split on either the input
feature or output feature dimension, the communication required for each layer is proportional to
the activation tensor size:

Communication volume = O(LTB)
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If weights are split on both input and output feature dimensions, then the minimal communication
required decreases proportional to the square root of compute units:

LTB

v

Communication volume = O

Pipeline Model Parallelism

Pipeline model parallelism is a different method of model parallelism where each compute unit is
responsible for a subset of the model’s layers. Each subset of layers constitutes a stage in a large
pipeline. The training batch is split into shards, of size b , to keep the pipeline full, with each stage
operating on a different shard of the training batch at any given time. We denote the number of
pipeline stages as N , so the number of layers allocated to each compute unit is roughly equal to:

Layers per compute unit = i
NP

There is a latency to fill and drain the pipeline between each weight update, so the number of
batch shards, equal to B/ b, should be high relative to N_. Cerebras has employed pipeline
model parallelism effectively for moderate sized networks, since the company’s Wafer-Scale Engine
(WSE) can operate efficiently on a batch size of one in each pipeline stage (bp= 1). Memory is
distributed across compute units and is used to store parameters and activations which are stored
for each layer processed by the compute unit. Activations need to be stored for the duration of
time between when a batch shard is processed in the forward pass and when it is processed in the
backward pass. This means that the number of samples buffered for each layer depends on the
layer’s location in the network pipeline, with the first pipeline stage storing activations for 2N -1
batch shards and the last pipeline stage storing activations for only one batch shard. Increasing
the number of compute units increases the pipeline depth, which increases the aggregate memory
required for activation buffers. As a result, the percentage of memory used for activation buffers
increases with the number of compute units. The worst-case memory required on a single compute
unit for parameters and activations is:

P L
Memory = — + (ZNP - 1)—pr
N, N,

The bandwidth required to move activations between pipe stages for the full batch is:

Communication volume = O(TB)
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Scaling Activation Paramete Communication Main Limitations
Approach Memory r Memory Volume
Data Parallel LTB P P Parameter memory
(DP) N does not decrease with
a N.
Tensor LTRB P LTB Communication does
Model N N_ not scale as well as
Parallel m m /N, compute.
(TMP)
Pipeline L P TB Activation memory and
(2N = l)—Tb = Il
Model p Np p N communication do not
Parallel p decrease with N.
(PMP)
DP+TMP LTB P P i LTB N Communication does
N YR d  not scale as well as
NN, N, N, \/ L
i e o N”“ compute. Complexity.
DP+PMP P P TB Sub-linear activation
(28,-1)~T8,  — L A eriendies
Np N N Nd emorv.a . )
p P communication scaling.
Complexity.
L, T i
DP+TMP+P (ZNp _ l)FN_ b, P P 4 LTB N,N, Complexity.
MP p N " NN, Nl /N,

Table 1. Overview of memory and communication requirements of common scaling approaches. The last
column highlights the primary limitation when scaling for a giant model.

Limitations of Scaling Stored-Weight Training

When scaling to multiple compute units, data parallelism is commonly chosen for its simplicity:
each compute unit performs the same computations and participates in one communication step,
to synchronize gradients, once per training iteration. However, data parallelism alone fails for
giant models due to its memory requirement per compute unit. The activation component of this
memory requirement can be reduced by increasing N, which decreases b . The model parameter
component of this memory requirement is not reduced as N, increases, which means model size
is limited by the compute unit's memory capacity. For GPT-3, the weights alone require 700GB of
memory, which is an order of magnitude greater than the capacity of a typical GPU.

Tensor model parallelism allows for the memory requirement per compute unit to be reduced

as N_ grows, but it introduces significant communication overhead. Activation tensors must be
communicated between compute units for each layer. The compute requirement per compute unit
for a fully connected layer is O(H?SB/N_) and the amount of communication required for activations
is O(HSB/JN_). Training on a large cluster with tensor model parallelism alone is likely to be
communication bottlenecked since compute units often provide orders of magnitude more FLOPS
than network bandwidth. Unlike data parallelism, where batch size can be increased to amortize this
overhead, this bottleneck cannot be as easily overcome because the batch size also factors into the
volume of communication needed for activations. Due to the frequency of communication, latency
can also become a critical component of training time if the cluster is large enough.
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Both the frequency of communication and required parameter memory are addressed by pipeline
model parallelism, but the aggregate memory needed for activations grows with N Earlier layers
in the network need to store more activation buffers as the number of pipeline stages increases,
which counters the effect of distributing the layers to more compute units. Since the percentage of
memory used for activations increases with the number of compute units, scaling out with pipeline
model parallelism for the purpose of fitting a larger model has diminishing returns. Pipeline model
parallelism also introduces implementation complexities. Each compute unit may be executing
different computations and communicating different types of tensors. The network needs to be
distributed such that each pipeline stage completes in the same amount of time. Furthermore,

as the pipeline depth increases, the overhead of filling and draining the pipeline between weight
updates becomes more significant, requiring a larger batch size.

These three approaches to parallelism can be combined to make training of giant neural networks
feasible, both in terms of compute time and memory required per compute unit. However,

the complexity introduced by these hybrid approaches puts them out of reach for many users.
Furthermore, all of these stored-weight solutions share one problem: that the number of compute
units required is partially dictated by the number of parameters in the network. The total number
of compute units used by a specific scale-out configuration is:

N=N;x N, xN,

For a neural network like GPT-3 with its large parameter count P, there is a smallest value of N
below which the model cannot be trained in the stored-weight paradigm due to per-compute
unit memory requirements. This is problematic because the compute requirement does not
always scale with the model’s parameter count. Workloads such as fine-tuning require storage for
the entire set of parameters but involve far less compute than pre-training. Allocating the same
amount of compute power to both workloads does not make sense. Architectural changes to the
neural network, such as the use of sparse attention, similarly reduce compute without reducing
storage required for parameters.

Clearly a new solution to scaling is needed to enable efficient training of giant neural networks.
The new solution should:

1. Not impose constraints on model size based on the memory available on individual compute units,
2. Be able to scale compute throughput with the computational requirements of the model, and
3. Achieve scaling without complicated hybrid approaches to parallelism.
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To accomplish this decoupling of compute performance from model size, we have developed a

radical new approach to training giant neural networks. It is based on three key points:

1. The replacement of CPU and GPU processing by wafer-scale accelerators such as the Cerebras
CS-2 system. This change reduces the number of compute units needed to achieve an
acceptable compute speed.

2. To meet the challenge of model size, we employ a system architecture that disaggregates
compute from model storage. A compute service based on a cluster of CS-2 systems
(providing adequate compute bandwidth) is tightly coupled to a memory service (with large
memory capacity) that provides subsets of the model to the compute cluster on demand. As
usual, a data service serves up batches of training data to the compute service as needed.

3. An innovative model for the scheduling and coordination of training work across the CS-2
cluster that employs data parallelism, layer at a time training with sparse weights streamed in
on demand, and retention of activations in the compute service.

We will give below the details of an implementation of this new approach, based on the Cerebras
CS-2 system, and we will assess its effectiveness for training GPT-3 as well as order-of-magnitude
smaller and larger models.

Introducing Weight Streaming

Our new approach to training is called weight streaming. It is based on the disaggregation of
compute and storage. Similar solutions have been developed which spread model weights over
multiple compute units and insert communication as necessary*, but our approach takes this a step
further. In weight streaming, model weights are not stored in the memory of the compute units at
all, as has been traditionally done. Instead, we move the weights to a separate memory service
characterized by a high storage capacity with relatively low compute capabilities. This means

that each component of the solution can be optimized for its specific role. Compute units can be
optimized for high floating-point throughput on linear algebra operations and the memory service
can be optimized for capacity and bandwidth. Specialization is commonly applied in existing
distributed training solutions for storage of the training dataset. In like manner, we store the
weights of a giant model in a separate memory service and stream them to the compute units as
needed. The dataset service and memory service have different requirements, so they are separate
components of the solution. The most important difference is the bandwidth requirement, which is
generally lower for the dataset service when training NLP models. As a result, we focus only on the
compute unit and memory service for the remainder of this paper.

Weight streaming can be combined with existing approaches for parallel training. The training
batch can be sharded over N, compute units to leverage data parallelism, requiring weights to

be broadcast from the memory service to all compute units and weight gradients to be reduced
between compute units. Tensor model parallelism can be used with weight streaming by splitting
activations on their feature dimension over N_ compute units and pairing separate memory
services with each compute unit. Pipeline model parallelism can similarly be combined with weight
streaming by splitting activations by layer over N, compute units and pairing separate memory
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services with each compute unit. Weight streaming, in all cases, requires bandwidth proportional
to P for streaming weights to the compute units and gradients from the compute units. This
matches the bandwidth required for stored-weight data parallelism, so does not introduce extra
bandwidth requirements. Combining weight streaming with model parallelism increases bandwidth
requirements since data movement is required for activations, between compute units, in addition to
weights and gradients between the memory service and compute units. For this reason and reduced
implementation complexity, we have focused on data parallelism (N =N =Tand N =N,)in the
Cerebras weight streaming implementation. Using this approach to scaling, an interconnect is
needed to link the single memory service to the cluster of compute units.

The Parameters of the Problem and Requirements on the Services

We designed the Cerebras weight streaming solution to enable scalable training of the largest
existing neural network models and to power the development of future models. Specific
examples of these models inform the requirements for the compute units, memory service, and
interconnect. Observing trends in the sizes and parameters of these models allows us to further
refine the requirements to best support the needs of future research. NLP models have seen the
most growth in parameter counts recently, requiring large-scale training, so these are our initial
focus. Table 2 details several of the largest transformer-based language models introduced over
the past three years.

Model Parameters (P) Layers (L) Features (H) Sequence Length (S)
GPT-2XL>  1.5x10° 48 1,600 1,024

Megatron-  8.3x10° 72 3,072 1,024

8.3B° _

Turing-NLG7 1.72x1010 78 4,256 1,024

GPT-3! 1.75x101 96 12,288 2,048

Megatron  5.3x101 105 20,480 2,048

T-NLG ®

Table 2. Evolution of large transformer-based language models over the past 3 years. Note that the features
(H) is also sometimes referred to as d

model®

The Required Performance

The compute units in the cluster should be capable of training these large models in a reasonable
amount of time. To estimate the compute requirement for the cluster, we calculate a target
floating-point operation rate which the cluster would need to deliver to train each model in one
week. The number of floating-point operations required to train each model can be estimated
given the number of tokens needed to train each model to convergence. Forward propagation
uses each model parameter once per token. Accounting for weight and activation gradient
computations, each model parameter is used three times per token. In all three cases, the weight
is used for a multiply-accumulate operation, resulting in 6 total floating-point operations per
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parameter per token. The number of operations needed to train the model is dominated by

the fully connected layers, so we can approximate the operation count for each model, shown

in Figure 3 and Table 3, by multiplying 6 x tokens x parameters. Dividing the estimated total
operations by 604,800, the number of seconds in one week, gives a target for the massive floating-
point performance required. For comparison, the target for Megatron T-NLG of 1,420 petaFLOPS
is more than three times greater than the performance, 442 petaFLOPS, of Fugaku, currently the
world’s largest supercomputer!

PetaFLOPS Target
10000
1000
100
m I I
1 .
GPT-2 XL Megatron-8.3B Turing-NLG Megatron T-NLG

Figure 3. PetaFLOPS required to train each model in 1 week.

Model Tokens to Train Total Operations PetaFLOPS Target
GPT-2 XL 3.00x1011 (est.) 2.7x1021 5

Megatron-8.3B 1.57x1011 7.82x1021 13

Turing-NLG 1.57x1011 1.62x1022 28

GPT-3 3.00x1011 3.15x1023 520

Megatron T-NLG 2.7x101 8.59x1023 1,420

Table 3. From left to right, (1) tokens to train the model to convergence or batch size multiplied by total
training steps (2) total floating-point operations used to train the model based on 6*tokens*parameters (3)
target petaFLOPS for a cluster to train in one week.
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The Required Memory Service Capacity
The main requirement of the memory service is capacity. Enough capacity is needed to hold

the weight, gradient, and optimizer state for each parameter in the model. Adam is a popular
optimizer choice, which requires two momentum terms per parameter. Assuming that weight
updates are computed in single-precision floating point format (FP32), the memory service must
store 16 bytes per model parameter to contain the weight, gradient, and two momentum terms.
We further round this up to 20 bytes per weight to account for a sparse working copy of the
nonzero weights, which includes a 2-byte column index and FP16 copy of the weight. Capacity
required of the memory service can then be computed by multiplying a model’s parameter count

by 20 bytes (Figure 4 and Table 4).

100000

10000

(=]

GPT-2 XL

Megatron-8.3B

Turing-NLG

Memory Requirement (GB)

1000

100
| I I

1

GPT-3 Megatron T-NLG

Figure 4. Memory required to store model parameters and optimizer state.

Model . Total Parameters Memory Requirement
GPT-2 XL 1.5x109 30GB

Megatron-8.3B | 8.3x10° 166GB

Turing-NLG 1.72x1010 344GB

GPT-3 1.75x1011 3.5TB

Megatron T-NLG 5.3x101 10.6TB

Table 4. Total parameters and storage size of model parameters and optimizer state.

The Required Interconnect Bandwidth

The interconnect between the memory service and the compute units should provide enough
bandwidth to support both the flow of weights to the compute units and the flow of weight
gradients from the compute units at a rate determined by the compute speed. Compute units
must be supplied with weights fast enough to avoid bubbles (unused processor cycles). During the
backward pass, weight gradients must be streamed out of the compute units as fast as they are
computed. We compute the bandwidth requirement by dividing the volume of data fed into and
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out of the compute units by the target compute time of one week. Weights are represented by
half-precision floating-point (FP16) values in our implementation. They are fed into the compute
units once during the forward pass, for computation of activations, and once during the backward
pass, for computation of activation gradients. Weight gradients are sent out of the compute units
in FP32 format during the backward pass. In total, 32 bits of data are sent in each direction per
parameter in the model per training iteration (Figure 5 and Table 5). (As is now commonplace,
gradients are computed and weights are updated at 32-bit precision, which preserves accuracy
over the many learning steps during training. On streaming to the compute units, they are
rounded to 16-bit precision for use there.)

Bandwidth Requirement (Gb/s)
10000

1000

100
10
1 .

GPT-2 XL Megatron-8.3B Turing-NLG GPT-3 Megatron T-NLG

Figure 5. Bandwidth required for weight and gradient communication to train each network in 1 week.

Model Total Tokens to Train | Batch Size Training | Bandwidth
Parameters Iterations | Requirement
GPT-2 XL 1.50x10° 3.00x10'1 (est.) |5.24x10°  1x10°(est.) 8Gb/s
'Megatron-8.3B  8.30x10° 1.57x101 11x105  1.43x10° | 63Gb/s
Turing-NLG 1.72x1010 1.57x1011 5.24x105  3.00x105 |273Gb/s
 GPT-3 1.75x101 3.00x1011 32x105  9.37x104 | 868Gb/s
Megatron T-NLG  5.30x101! 2.70x101 39x105  6.92x104 | 1.94Tb/s

Table 5. From left to right, (1) Total parameters in the model (2) Total tokens needed to train the model (3)
Batch size in tokens used to train the model based on published values (4) Total training iterations calculated
by dividing tokens to train by batch size (5) bandwidth required in each direction computed by multiplying
number of parameters by number of iterations by 32 bits and dividing by seconds per week.

The estimates in Tables 3, 4, and 5 provide bounds for the compute, memory, and bandwidth
capabilities required of our weight streaming implementation. For example, the compute units
should scale from a combined compute throughput of tens to thousands of petaFLOPS based on
the floating-point operations required to train each model. The memory service should support a
minimum of 4TB capacity to enable training of GPT-3 sized models.
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Components of the Cerebras Solution: Wafer-Scale Engine,
MemoryX, SwarmX

The Cerebras weight streaming implementation is built around our second-generation Wafer-
Scale Engine (WSE-2), which lies at the heart of the CS-2 system. Storage for model parameters
and optimizer state is disaggregated from compute into our memory service, called the MemoryX
service. The MemoryX service provides persistent storage for the parameters. It accepts weight
gradients and uses stored optimizer parameters to compute weight updates between training
iterations. The Cerebras weight streaming architecture allows for training to be scaled, without
replication of the model, to a cluster of CS-2 systems, each served by a single MemoryX service.
Weights and gradients are shuttled between the single MemoryX service and multiple CS-2
systems by our SwarmX interconnect fabric.

Compute: The Wafer-Scale Engine

The Cerebras weight streaming implementation harnesses the power of the WSE-2 to compute
activations, activation gradients, and weight gradients for each batch of training samples. The
WSE-2 is an optimal compute unit for training giant neural networks because it can parallelize
computation of massive layers over its 850,000 cores. The on-wafer network of the WSE-2 offers
an aggregate 220Pb/s of bandwidth, which is three orders of magnitude more than the aggregate
bandwidth between GPUs in an NVIDIA DGX™ server. This bandwidth is uniform between cores,
meaning that the WSE-2 can truly be treated as a single massive compute unit. This allows giant
layers in our weight streaming implementation to be executed extremely quickly on a single
compute unit, avoiding the need to employ tensor model parallelism.

Activations computed during the forward pass and intermediate activation gradients computed
during the backward pass are stored in the WSE-2's on-wafer memory. With 40GB of SRAM
distributed across 850,000 cores, the WSE-2 has enough activation storage for massive layers
and provides 20PB/s of aggregate memory bandwidth for ultra-fast access to activations during
computation. The activation tensors stored on-wafer are used for computation of the subsequent
layer's activations as weights arrive from the MemoryX service. During the backward pass the
stored activation and activation gradient tensors are used for computation of weight gradients
which are sent back to the MemoryX service. The WSE-2's 1.2Tb/s of I/0O bandwidth is used for
receiving weights from and transmitting gradients back to the MemoryX service.

Exploiting weight sparsity

While the WSE-2 allows each layer to be distributed over hundreds of thousands of cores,
reducing computation time, parallelism is not the only way to reduce training times. In response to
the explosive growth in model size, researchers have been developing smarter models which make
more efficient use of their parameters. Weight sparsity is one promising way to reduce parameter
count, and in recent tests large drops in training floating-point operations were reported, as shown
in Table 6. The Lottery Ticket Hypothesis® for example, showed that model parameters can be
pruned by 90% without a reduction in accuracy.
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Technique Sparsity FLOP |, Reference

Fixed Sparse Training 90% 8x Lottery Ticket [MIT CSAIL]

Dynamic Sparse Training 80% 2x Rig the Lottery [Google Brain, DeepMind]
Scaling-up Sparse 90%+ 10x+ Pruning scaling laws [MIT CSAIL]

Training

Monte Carlo 50% 2x DropConnect in Bayesian Nets [Nature]
DropConnect

Table 6. Some Existing Sparsity Research Examples.

Realizing a performance improvement from this kind of unstructured sparsity, while historically
difficult due to hardware limitations, will be essential to affordably training larger models. The
WSE-2's unmatched performance on sparse linear algebra operations is key to achieving our
targeted training times.

Using the WSE-2 for weight streaming allows us to reduce training time by automatically taking
advantage of weight sparsity. The WSE-2 is the only processor that handles unstructured sparsity
at the silicon level. The WSE accelerates sparse computation using dataflow scheduling where
computational work is triggered by the arrival of data over the fabric. Zeros are omitted when a
tensor is transmitted over the fabric, which results in a reduction of computation time proportional
to the sparsity of the tensor. In the weight streaming execution mode, model weights are
transmitted over the fabric, reducing compute proportional to the sparsity of the weights. Cores in
the WSE take advantage of the enormous memory bandwidth available to operate at full utilization
on a single weight value at a time, providing a speedup even for weights with unstructured
sparsity. Sparsity can reduce wall-clock time of both weight communication and all four
computational phases: activation, activation gradient, weight gradient, and weight update. This
allows the Cerebras weight streaming solution to train giant networks faster without a bottleneck.
Figure 6 uses projections based on measured utilization to show how weight sparsity can be
leveraged to further reduce training time. Models the size of GPT-3 can be trained in a single day.
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GPT-3 Training Time (days)
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Figure 6. Time needed to train GPT-3 plotted against number of CS-2s at different levels of weight sparsity.

Weight Storage: The MemoryX Service

Model parameters and optimizer state are stored using the MemoryX service, where they are also
updated between each training iteration. The capacity of the MemoryX service can scale from 4TB
to 2.4PB, allowing the solution to support models with up to 120 trillion parameters. Internally,
the MemoryX architecture uses both DRAM and flash storage in a hybrid fashion to achieve both
high performance and high capacity. Achieving full compute utilization requires enough network
and memory bandwidth to feed weights into the compute units as fast as they are consumed for
computations. Both the storage and I/O interface of the MemoryX service can match or exceed
the 1/0O bandwidth of a CS-2 system.

It is important that parameters can be accessed by the compute units with minimal latency, to
avoid bubbles during the training process. The process of streaming weights for each layer can be
pipelined since weights for most layers can be accessed before computations of the previous layer
complete. The one exception to this occurs at the boundary between training iterations, when
weights are updated. This means that latency can be hidden for most of the training iteration and
has a minimal impact on performance.

Weight updates are performed by the MemoryX service, which provides flexible compute capable
of supporting any optimizer algorithm, such as SGD or Adam. The amount of compute required
for weight updates is relatively low compared to the compute used to calculate activations and
gradients. This is because the number of weight update operations is proportional to the number
of parameters, O(P), but activation and gradient compute increases linearly with the batch size,
O(BSP). For the same reason, it is possible for the compute provided by the MemoryX service to
support any size of CS-2 cluster. Weight updates must be computed at least as fast as weights

are streamed out to the CS-2s to avoid a compute bottleneck. Each weight is streamed out of the
MemoryX service twice between each weight update, once in the forward pass and once in the
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backward pass. The MemoryX service delivers a FLOP/s rate three orders of magnitude greater
than its I/O bandwidth, which allows for execution of thousands of floating-point operations per
weight on each training iteration. This is plenty of compute power to support any commonly used
optimizer algorithm.

Linking Weights to Compute: The SwarmX Fabric

For each training iteration, for each network layer, a copy of the layer weight tensor is sent from
the MemoryX service to each CS-2 system, once for computing activations in forward propagation,
and again for computing activation gradients during backwards propagation. Weight gradients
computed by each CS-2 system are also sent back to the MemoryX service where they are used for
weight updates. We use the SwarmX fabric to connect the MemoryX service to each CS-2 system,
facilitating the broadcast of weights and aggregation of gradients (Figure 7). The MemoryX service
sends a single copy of the weights to the SwarmX fabric, which handles the broadcast to each
CS-2 system. On the backward pass, the MemoryX service receives a single copy of the gradients
from the SwarmX fabric.

SwarmX

:Verghts cs2
Gradients
MemoryX
/
Weight
Memory Weights,
—
Gradients \

Optimizer
Compute

Figure 7. Connectivity between the MemoryX service and a CS-2 cluster
using the SwarmX fabric.

Since each CS-2 system is computing a partial gradient for the entire training batch, the gradients
from each CS-2 system need to be accumulated prior to the weight update. We chose to perform
this reduction inside of the SwarmX fabric, which requires the fabric to perform just one add per
element per CS-2. Reducing along the way has the benefit of making the bandwidth requirement
symmetrical for weight and gradient communication. One copy of the gradient tensor propagates
back through the SwarmX fabric, over each link, to the MemoryX service. Moving the reduction
into the SwarmX fabric also has the benefit of providing a clean abstraction. From the perspective
of the MemoryX service, the SwarmX fabric looks just like a single CS-2 and from the perspective
of the CS-2, the SwarmX looks just like the MemoryX service. This abstraction allows us to use the
same compute unit and memory service regardless of cluster size.
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The SwarmX fabric is composed of broadcast-reduce nodes each containing a set of 100Gb/s
network interfaces. Each broadcast-reduce node provides enough bandwidth to perform either
1:4 broadcast-reduce operations or a pair of 1:2 broadcast-reduce operations. The nodes can be
configured in several different modes, which provides flexibility to meet the needs of a particular
cluster. Each node provides enough compute to perform the floating-point gradient reductions at
line-rate, allowing reductions to occur as gradients flow back to the MemoryX service.

SwarmX nodes are connected in a bidirectional tree topology which minimizes the overall
bandwidth and latency required to perform the broadcast and reduction operations (Figure 8 and
Figure 9). Each CS-2 system has 1.2Tb/s of /0O bandwidth and, in the worst case, needs weights
to be delivered at this rate to keep the compute units busy, so the aggregate bandwidth required
from the SwarmX fabric increases linearly with N, the number of CS-2 systems. To satisfy this
requirement, the number of nodes composing the SwarmX fabric scales linearly with N. Since
tree reductions are work-efficient, the compute required also increases linearly with N, and is
delivered by the compute in each broadcast-reduce node. A tree topology also has the benefit of
reduced latency, with the latency between the MemoryX service and the CS-2 systems growing
logarithmically with N.

Broadcast
Reduce

MemoryX

Memaoryx
Unit

Unit

Broadcast
Reduce

Figure 8. SwarmX fabric connectivity for a cluster of Figure 9. SwarmX fabric connectivity for a cluster of
4 CS-2 systems. 8 CS-2 systems.
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Principles of Operation

The Cerebras Graph Compiler (CGC) integrates with machine learning frameworks, such as
TensorFlow and PyTorch, to compile user models into binaries that can execute on a CS-2 system
and supporting cluster. The CGC now natively supports the new weight streaming execution
mode. All details of the workload mapping and distribution are handled by the CGC, allowing
users to easily bring up existing models on a cluster of CS-2s. As explained above, the weight
streaming approach streams weights (one layer at a time) from the MemoryX service to a CS-2
cluster, which computes weight gradients and streams them back to the MemoryX service where
weights are updated. One batch of activations remains resident in the CS-2 cluster while the
forward and backwards propagation passes occur; then this process is repeated with a new batch
streaming in from the data storage service.

Execution on the Wafer-Scale Engine

At the start of each training iteration, a unique shard of the training batch is downloaded

from the data service to each CS-2 system, and then to the WSE-2. This shard serves as the
activation input to the first layer in forward propagation. The WSE-2 is responsible for computing
activations, activation gradients, and weight gradients for its local shard. Layers run one at a time
in the forward and then in the backward pass. For each layer, the sparse weights arrive from the
MemoryX service twice, first to trigger compute operations with the activations in the forward
pass, and again for the backward pass when the activation gradient from the following layer
becomes the input activation gradient for the previous layer. The activations for the local shard
are stored on the wafer throughout the training iteration. Stored activation shards, one per layer,
that are generated during the forward pass are consumed in the backward pass to compute
weight gradients. Weight gradients computed by the WSE-2 in the backward pass are sent to the
MemoryX service through the SwarmX fabric, where they are added to the weight gradients of
all the other shards, so that the sum of the per-shard weight gradients is finally presented to the
MemoryX service.

Data Layout on the Wafer

Activation and activation gradient tensors are stored in the memory of the WSE-2. Each of the
850,00 cores on the WSE-2 contains 48kB of memory, which is used to store these tensors. The
method of distribution of these tensors over the wafer, what we refer to as data layout, is an
important aspect of execution on the wafer. This is because the arrangement of data determines
how much work each core performs, and which communication operations are required. On the
WSE-2, we use a rectangular array of interconnected cores to perform the tensor operations found
in neural network layers. The matrix multiplication of a fully connected layer is an example. A
WSE-2 implementation of a tensor operation specifies its own layout for its weight and activation
tensors as well as the local computation and the inter-core communication needed for the
implementation. Activation tensors are often distributed across the cores such that an individual
activation tensor element is stored on one core. Weight tensors are received from the 10 interface
along one edge of the rectangle of cores and trigger local computations on each core. The
communication often entails broadcast of input tensors across rows or columns of cores and the
sum-reduction of partial outputs, also across rows or columns of cores. The software stack allows
for each implementation of a tensor operation to specify its desired data layout, but it is important
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to use a consistent strategy to reduce data movement as the network executes.

Activation tensors in models like GPT-3 have three dimensions: batch, sequence, and hidden
(feature). Our general method of distributing tensor data on the wafer involves splitting one

or more of these tensor dimensions over the wafer's x and/or y dimension. For example, if we

split the tensor’s hidden dimension over the wafer’s x dimension, it means that each core in a

row of cores has a contiguous chunk of features from the logical tensor, with adjacent cores
containing adjacent chunks of features. One goal of this activation layout strategy is to reduce data
movement during and between compute operations. Compute operations involving activations

or activation gradients are performed on the core containing the corresponding elements of the
tensor. This means that elementwise operations can be performed without any data movement.
Elements are read from local memory, the compute operation is executed, then the resulting
elements are written back to local memory. However, reductions over dimensions of these tensors
do require communication between cores containing each chunk of the reduced dimension. Our
data layout strategy for NLP models, depicted in Figure 10, optimizes for reductions over the
hidden and sequence dimensions since these are the most common. The feature dimension is split
over the wafer’s x dimension, and the sequence and batch dimensions are split over the wafer's y
dimension, with elements from each sequence mapped to adjacent sets of cores. Reductions over
the batch dimension are needed for computation of weight gradients, but these operations also
require a reduction over the sequence dimension, both of which can be efficiently accomplished
with a single sequential reduction over the wafer’s y dimension.
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Figure 10. Layout of an activation tensor on the wafer. Chunks of the H dimension are distributed
over rows of cores. Chunks of the S and B dimensions are distributed over columns of cores with
sequential chunks of the S dimension on adjacent cores.
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Activation and activation gradient computations for fully connected layers involve matrix
multiplication operations which reduce over the hidden dimension. For an activation computation,
where X is the input activation tensor, W is the weight matrix, and X, is the output activation tensor:

X,[B x S| [Hy]'= W[H,] [Hy] x X,[B x S][H,]

Where H_ is the hidden dimension of the input and H, is the hidden dimension of the output.
This data layout allows for reductions over the hidden dimension to occur between adjacent sets
of cores in each row, reducing the bandwidth requirement. Weight gradient computations for
fully connected layers involve matrix multiplication operations which reduce over the batch and
sequence dimensions:

dW[H,] [Ho| = dX,[B x S][H,]" x X,[B x S| [H]

Our chosen data layout also allows for reductions over these dimensions to occur between
adjacent sets of cores in each column.

Our array of cores is roughly square, but these tensor dimensions are not; the feature dimension
used by GPT-3 is 12k, and batch shards typically contain hundreds of thousands of tokens. To
better map these disparate dimensions to the wafer, we can also split the batch dimension over
the fabric x dimension as shown in Figure 11. This allows us to evenly spread the activation and
activation gradient tensors to the entire wafer, while giving each core a roughly square subregion
of the tensor. Features from the same sequence in the batch are still placed on adjacent cores
within the row, but each row of cores contains data from more than one sequence in the batch.
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Figure 11. Layout of an activation tensor which splits the B dimension over both spatial dimensions on
the wafer. This allows the per-core sub-tensor to be roughly square even when the number of tokens is
much greater than the number of features.
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Data Layout for Weights and Gradients

Weight and gradient tensors are not stored persistently on the WSE-2 but are streamed on and
off the WSE-2 from and to the MemoryX service. Weight data arrives over the on-wafer network
connections which link each core to its four adjacent neighbors. Weight data is split over these
links such that each core only receives weights needed for computations on its local activations.
The number of columns, H, in a weight matrix corresponds to the hidden dimension of the

input activations. When computing activations for the next layer, the H, dimension of the weight
matrix is split over the wafer’s x dimension to produce the same distribution as is used for the

H dimension of the input activations. This is depicted in Figure 12. During the backward pass
computations of activation gradients, the number of rows, H,, in the weight matrix corresponds
to the hidden dimension of input activation gradients. As a result, we split the H, dimension over
the fabric X dimension for this operation. When weight gradients are computed in each column
of cores, they are transmitted out of the column with similar distribution to the weights. Gradients
are computed one row at a time to match the order of activation computations, so each row of
gradients is split along its H, dimension over the wafer’s x dimension. Computing gradients in the
same order as forward pass activations means that the weights of the first layer can be updated in
the same order as they are streamed out, allowing for more efficient pipelining.
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Figure 12. Data layout used for weights arriving during activation computations.

Wafer Scale Matrix Multiplication

Matrix multiplication operations dominate the compute used by NLP models such as GPT-3. They
are used for all three phases of fully connected layer execution: activation, activation gradient, and
weight gradient. We have achieved high utilization on these operations by avoiding bandwidth
bottlenecks, through our data layout strategy, and minimizing overheads. There are two flavors of
matrix multiplication that are needed to train sparse models: one which supports a single sparse
input and dense output and another which supports two dense inputs and a sparse output.
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One Sparse Input

The first flavor of matrix multiplication is targeted at activation and activation gradient
computations. A dense activation tensor, stored in local memory, is multiplied with a sparse weight
tensor streamed into the WSE-2 from the MemoryX service. The resulting dense activation tensor
is stored to local memory.

This matrix multiplication operation is broken down into a series of matrix vector multiplications.
Each matrix vector operation multiplies one row of the weight tensor with the entire activation
tensor in local memory and results in a single vector of the output tensor. As described in the
previous section, a row of sparse weights is streamed onto the wafer with the row split such that
each weight arrives on the column of cores containing all corresponding activations. Weights are
broadcast to all cores in the column using the on-wafer network whose routers support multicast
in hardware. As weights arrive at each core, they are multiplied with the corresponding feature
for each token in the core’s subset of the batch and accumulated into a temporary buffer. After
all weights for the row have been processed, each core contains a partial sum which must be
reduced with all cores in the row to compute the result. Partial sums are reduced over a ring
using the on-wafer network, with the result landing on the column of cores which should store the
feature corresponding to the received row of the weight matrix. These broadcast and reduction
communication patterns are shown in Figure 13.
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Figure 13. Inter-core communication patterns used for matrix multiply.
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Tensor operations on the wafer are driven by the arrival of weight data or commands. The arrival
of weight data triggers a floating point multiply-accumulate operation between the received
weight data and corresponding row of activations. Commands are sent by the MemoryX service’s
coordinator, as shown in Figure 14, which drives execution of each tensor operation, and are used
to trigger other operations such as the partial sum reduction. When the cores receive a partial sum
command, they initiate communication with their upstream neighbor, reducing incoming partial
sums with the values in their local accumulators and transmitting the results to their downstream
neighbor. The fully reduced values are received and stored on one column of cores indicated by
a special argument to the partial sum command sent to that column. Commands can be used to
trigger other computations on the wafer such as nonlinear functions or normalization operations.
This system allows us to support all tensor operations required by NLP models.

W, [H][H]
weight stream
W,[H][H]
y=max(Wx', 0)

command stream

FMAC
Reduce
FMAC
Reduce
Relu

Figure 14. Inputs from the MemoryX service to the WSE which drive execution
of each tensor operation.

Sparse Output

The second flavor of matrix multiplication is intended for computing weight gradients. A dense
activation tensor and dense activation gradient tensor, both stored in wafer memory, are multiplied
to compute a sparse weight gradient tensor which is sent off-wafer.
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B*S

B*S

Figure 15. Matrix multiplication with a sparse output.

Since the Cerebras weight streaming implementation supports unstructured weight and gradient
sparsity, this matrix multiplication operation is computed one output element at a time on each
core. Computation of each weight gradient involves a dot product between the corresponding
activation and activation gradient vectors, as shown in Figure 15. The MemoryX service sends

a sparsity mask to the WSE-2 as input, which instructs the wafer to compute a gradient for each
masked position. Gradients are computed for each row of the weight matrix in order, so this
mask is received one row at a time. Each row of the weight matrix corresponds to a single output
feature. The row of the activation gradient tensor corresponding to this feature is broadcast to

all cores in each row of cores using the blue and green routes shown in Figure 16. An element

of the output gradient tensor is then computed by multiplying this broadcasted vector with the
feature from the activation tensor corresponding to the weight gradient’s column index. The
sparsity mask input is split over the fabric the same way that the weight matrix is split, such that
masked elements are received on the core containing the corresponding activation feature data.
This means that the broadcasted gradient vector can be multiplied with activation data from local
memory to compute a partial sum of the gradient element. A chain routing pattern, also shown
in Figure 16, over the on-wafer network is used to accomplish the reduction of these partial sums
between cores in the same column, containing the same feature for different tokens in the batch.
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Sparsity mask broadcast
Activation gradient broadcast

Partial sum chain

Figure 16. Inter-core communication patterns used for gradient variant
of matrix multiply.

Execution on the MemoryX Service

Model parameters and optimizer state are stored persistently on the MemoryX service during
training in weight streaming mode. The MemoryX service performs three primary functions
corresponding to the three phases of training: weight streaming, gradient receipt, and weight
update. These operations and the weight and gradient streaming interfaces are shown in Figure
17. During the forward and backward passes, the MemoryX service streams weights out to the
WSE-2. In the backward pass, the MemoryX service sends a sparsity mask for each layer as a
request for the wafer to compute gradients. It then receives gradients back from the WSE-2 and
updates the weights before the next training iteration begins.

The MemoryX service stores weights in both dense and sparse formats. A dense copy of the
weight and optimizer state is needed for most sparsity algorithms, since they need the ability
to regrow the weights. The dense format includes FP32 values for all weights and per-weight
optimizer states such as momentums. A compressed sparse row (CSR) representation is used
for the sparse copy of the weights, using FP16 for the weight values and a 16-bit delta-encoded
integer for the index. The dense FP32 format is used for performing weight updates, but only
the active sparse weights are updated. Updated weights are converted into the sparse format
by applying a sparsity mask and rounding values from FP32 to FP16. During the forward and
backward passes, it is the sparse format of the weights which is sent to the WSE-2.
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Figure 17. Data stored on the MemoryX service and the WSE and
communication between the two.

Weights can be streamed out of the MemoryX service in either forward or backward order. As
described in the previous section, the WSE-2 computes GEMM operations, corresponding to
activation or activation gradient computations, as a series of GEMV operations. One feature of the
output tensor is computed at a time. In the forward pass, the output features correspond to rows
of the weight matrix, so the MemoryX service streams sparse weights in row-major order so that
the wafer receives full rows of the matrix one at time. This order is flipped in the backward pass
when the WSE-2 is computing one row of the activation gradients, corresponding to the previous
layer's features, at a time. Supporting both orders requires the MemoryX service to transpose the
sparsity pattern of the weight matrix each time the sparsity pattern is updated. The forward and
transpose orders both provide views to the same underlying data, so that only one copy of weights
needs to be updated.

During the backward pass, weight gradients are requested and received from the WSE-2 by the
MemoryX service. Computation of weight gradients on the WSE-2 is triggered by arrival of a
sparsity mask indicating which gradient values should be computed. The sparsity mask is sent

by the MemoryX service and has the same format as the index component of the forward-order
weights. However, the MemoryX service can choose to use a different sparsity mask than that of
the weight matrix to trigger computation of gradients corresponding to zero-valued weights. This
can be useful when trying to change the sparsity of the weight matrix. For example, the MemoryX
service can change a zero-valued weight to a non-zero when its gradient value exceeds some
threshold. FP32 gradient values are sent back from the WSE-2 to the MemoryX service in the order
that the sparsity mask was sent.
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Figure 18. Pipelining of weight and gradient communication between the MemoryX service and
the WSE-2.

The MemoryX service performs weight updates after gradients have been received. Scheduling in
the MemoryX service is designed to avoid a latency bottleneck in the training loop. While storing
model parameters farther from the compute nodes results in a higher communication latency, this
is hidden by pipelining which is depicted in Figure 18. In the forward pass, the MemoryX service
begins streaming weights for a layer before the WSE-2 has completed activation computations
for the previous layer. The same approach is used in the backward pass, but in reverse with
transposed weights. While the MemoryX service is streaming weights in transpose order for

the backward pass, it is also collecting gradients being streamed back from the WSE-2. Weight
updates can be applied as gradients are received, such that the new weights are ready for the
next training iteration as soon as gradients are received for the first layer. The critical path is for
the weights of the first layer, as these are the last to receive gradients and the first needed in the
forward pass of the next training iteration. To mitigate this, the WSE-2 computes gradients for
weights in the same order as weights are transmitted for forward pass operations. This means
that updated weights for the next training iteration can be streamed out before the WSE-2 has
completed gradient computations for the first layer. The round-trip latency between the MemoryX
service and the WSE-2 can be completely hidden when the compute time of the first layer is
greater than the round-trip latency.
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Summary

We have presented weight streaming as a new paradigm for training giant models. Weight
streaming disaggregates the storage of parameters from the compute units. We described an
implementation, i.e. the Cerebras weight streaming architecture, that is based on wafer-scale
compute units; a new system, the MemoryX service, for parameter storage and update; and a
novel interconnection, SwarmX fabric, between parameter memory and compute. We believe that
because of the storage volume provided by our MemoryX service, our weight streaming solution
provides the only way currently known to run models with hundreds of trillions of parameters.

The architecture is designed around the Cerebras WSE-2 system which contains a wafer-scale
processor that provides enough compute power and on-wafer SRAM to support layer sizes an
order of magnitude greater than those used in today’s state-of-the-art models. Since each WSE-

2 can support massive layers, our architecture is able to use a scale-out model based on pure
data parallelism, which can support a cluster delivering more floating-point performance than the
current largest supercomputer in the world for this class of workloads. The WSE is also a preferred
platform because, unlike units that prefer dense matrix multiplication, it can fully exploit sparsity
in the weight tensors, for a one to two orders of magnitude reduction in computational work and
runtime. We achieve runtime reduction nearly linear in number of nonzero weights for unstructured
weight sparsity.

We contend that the combination of effective sparsity, compute units capable of storing full layers,
and memory disaggregation gives researchers the only practical way to train models with trillions
of parameters.
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