Memory Challenges in Genomics & Next Gen Sequencing | Kisaco Research

As the cost of sequencing drops and the quantity of data produced by sequencing grows, the amount of processing dedicated to genomics is increasing at a rapid pace.  Genomics is evolving in a number of directions simultaneously.  Some key applications scale naturally to use resources available in the cloud, while other computations benefit from on-prem acceleration using FPGAs or GPUs.  All of these computations strain the bandwidth and capacity of available resources.  In this talk, Roche´s Tom Sheffler will share an overview of the memory-bound challenges present in genomics and venture some possible solutions.

Session Topics: 
External Memory
Systems Design
Use Case
Speaker(s): 

Author:

Tom Sheffler

Solution Architect, Next Generation Sequencing
Roche

Tom earned his PhD from Carnegie Mellon in Computer Engineering with a focus on parallel computing architectures and prrogramming models.  His interest in high-performance computing took him to NASA Ames, and then to Rambus where he worked on accelerated memory interfaces for providing high bandwidth.  Following that, he co-founded the cloud video analytics company, Sensr.net, that applied scalable cloud computing to analyzing large streams of video data.  He later joined Roche to work on next-generation sequencing and scalable genomics analysis platforms.  Throughout his career, Tom has focused on the application of high performance computer systems to real world problems.

Tom Sheffler

Solution Architect, Next Generation Sequencing
Roche

Tom earned his PhD from Carnegie Mellon in Computer Engineering with a focus on parallel computing architectures and prrogramming models.  His interest in high-performance computing took him to NASA Ames, and then to Rambus where he worked on accelerated memory interfaces for providing high bandwidth.  Following that, he co-founded the cloud video analytics company, Sensr.net, that applied scalable cloud computing to analyzing large streams of video data.  He later joined Roche to work on next-generation sequencing and scalable genomics analysis platforms.  Throughout his career, Tom has focused on the application of high performance computer systems to real world problems.